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Abstract
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1 Motivations and main results

The mean-variance approach for asset returns first rigorously formalized by the seminal

work of Hansen and Richard (1987) is a cornerstone in the theory of portfolio allocation.

Nevertheless, the orthogonal decomposition of returns proposed therein allows the char-

acterization of the mean-variance frontier only at a single fixed time horizon T . Returns

that lie on the mean-variance frontier at T generally do not exhibit this desirable property

at any intermediate date t before T . Therefore, we propose a generalization of the tradi-

tional mean-variance approach that accounts for multi-horizon investment decisions. We

also allow interest rates to be stochastic.

Specifically, we consider a continuous-time arbitrage-free market with finite horizon

T , stochastic instantaneous rates and several risky securities that pay no dividends. We

present all the results in a conditional setting, where we take into consideration two sources

of randomness: prices of primary assets and instantaneous rates.

In order to decompose asset returns, we construct a space of forward prices, that we

denote HT
s , and a risk-adjusted measure QT , that we obtain from the forward measure. HT

s

is made by conditional forward martingales that can be univocally associated with returns.

Moreover, this space is endowed with an inner product based on the conditional expectation

of terminal values under QT . The overall structure is termed Hilbert module by Cerreia-

Vioglio, Maccheroni, and Marinacci (2017). Interestingly, no-arbitrage prices feature an

inner product representation in HT
s , in agreement with the literature since Harrison and

Kreps (1979). After decomposing the module HT
s , in Corollary 4 we show that a return

process {uτ (s)}τ∈[s,T ], where each uτ (s) is the ratio of no-arbitrage prices πτ/πs, satisfies

the orthogonal decomposition

uτ (s) = gτ (s) + ωseτ (s) + nτ (s), τ ∈ [s, T ]

in the spirit of Hansen and Richard (1987). Here g(s) is the so-called log optimal return, e(s)

is the mean excess return, n(s) is an additional zero-price return and ωs is a random weight

measurable at time s. All returns in the decomposition are (conditionally) orthogonal

according to the measure QT . In addition, the associated mean-variance frontier in the

period [s, T ] is made up of asset returns with null n(s). A Two-fund Separation Theorem

holds (Theorem 10) and so the frontier turns out to be spanned by g(s) and the return f(s)

associated with a pure discount T -bond. In addition, it is possible to decompose returns

also in any subperiod [s, t] with t < T by using a proper risk-adjusted measure Qt associated

with the horizon t.

The main advantage of our decompositions is time consistency. Since we decompose the

whole forward martingale processes that define returns, the decompositions over different
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temporal windows overlap. As a result, a time consistency property holds for our mean-

variance returns: returns on the mean-variance frontier at time T are mean-variance returns

at date t, too (Corollary 9). For example, a buy-and-hold one-year horizon mean-variance

portfolio (according to QT ) turns out to lie on the mean-variance frontier also at six-month

horizon (according to Qt). In fact, our mean-variance frontiers are spanned by the same two

assets across a continuum of maturities. This feature is absent in the classical treatment of

mean-variance portfolio selection, where second moments computed with respect to different

information structures are usually incomparable.

The practical advantage implied by this feature is remarkable in terms of transaction

costs, in particular replication costs. Consider, e.g., an investor that faces a multi-horizon

portfolio allocation problem, namely, who has to meet N expected return targets at N

subsequent maturities. She wants to achieve these expected returns by investing in N

buy-and-hold portfolios while minimizing their variances. According to the standard mean-

variance approach, she should solve N different optimization problems that would lead to

N portfolios requiring the replication of 2 different assets each. Globally, she would need

to replicate 2×N assets. On the contrary, according to our approach, she has to replicate

only 2 securities as all the N portfolios she builds involve different units of the same assets

(the ones with returns g(s) and f(s)). The loss in terms of standard deviation of our

investment strategies can be compensated by sizable savings on their implementation costs.

Indeed, after incorporating transaction costs in the analysis, time-consistent mean-variance

portfolios can display a higher Sharpe ratio than classical mean-variance portfolios. We

illustrate several examples in Section 5, including life annuities.

Finally, similarly to Cochrane (2014), we provide a microeconomic foundation for our

mean-variance frontier by showing that our mean-variance returns are optimal for a specific

quadratic utility agent that solves a consumption-investment problem. In agreement with

our theory, the arising optimal portfolio turns out to be time-consistent with respect to

changes in the investment horizon.

The paper is organized as follows. Section 2 involves the theoretical instruments to study

return dynamics. The section describes the no-arbitrage pricing framework, introduces the

risk-adjusted measures Qt and the module of forward prices Ht
s. We devote Section 3 to

the orthogonal decomposition of asset returns at a fixed horizon while, in Section 4, we

present our mean-variance frontier and its time consistency. We also formulate a Two-fund

Separation Theorem and a β-pricing representation for excess returns. We devote Section

5 to several numerical simulations to illustrate time consistency and the reduction of trans-

action costs in different contexts. Section 6 describes the link between our mean-variance

portfolios and the optimal allocation of a constrained investor with quadratic utility. Sec-
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tion 7 concludes. Finally, the Appendix contains additional results and simulations, and all

the proofs.

2 Framework and essentials

We describe the asset pricing framework and the essential tools for the intertemporal de-

composition of returns: the risk-adjusted measures Qt and the modules of forward prices

Ht
s. We simultaneously introduce the notation of the paper.

2.1 Arbitrage-free market and numéraire changes

Fix T > 0 and consider the probability space (Ω,F , P ), where P is the physical measure. We

build a financial market on (Ω,F , P ) by considering two random processes X = {Xt}t∈[0,T ]
and Y = {Yt}t∈[0,T ]. The process X is N -dimensional and consists of prices of N primary

risky assets that generate the market, i.e. Xt = [X
(1)
t , . . . , X

(N)
t ]′. On the contrary, Y is one-

dimensional and represents the stochastic instantaneous interest rate. The money market

account has value e
∫ t
0 Yτdτ at any time t. Moreover, pure discount bonds with any possible

maturity and face value equal to 1 are traded.

At any instant t we define the vector of relative prices Zt = e−
∫ t
0 YτdτXt and consider the

filtered probability space (Ω,F ,F, P ), where F = {Ft}t∈[0,T ] is the filtration generated by

the pair (Z, Y ). We assume that our price system satisfies the no-free lunch with vanishing

risk (NFLVR) condition and that relative asset prices Z are semimartingale (Delbaen and

Schachermayer, 1994). By the First Fundamental Theorem of Asset Pricing there exists

a probability measure equivalent to P that makes Z a sigma-martingale (Delbaen and

Schachermayer, 1998).1 We assume that at least one of the sigma-martingale measures,

denoted by Q, is an equivalent martingale measure, i.e. it makes Z a martingale process.

The Radon-Nikodym derivative of Q with respect to P is LT and we define Lt = Et[LT ]

and Lt,T = LT /Lt at any time t ∈ [0, T ]. As in Harrison and Kreps (1979), we assume that

e−
∫ t
0 YτdτLt belongs to L2(Ft) for all t. We denote by M = {Mt}t∈[0,T ] the strictly positive

stochastic discount factor process associated with Q, i.e. Mt = e−
∫ t
0 YτdτLt. The related

pricing kernel in the time interval [t, T ] is Mt,T = MT /Mt.

We now consider a pure discount bond with maturity T and we denote its no-arbitrage

price at time t by πt(1T ). The yield to maturity at time t is rTt = − log πt(1T )/(T − t)
and rTT denotes the a.s. (finite) limit of rTt when t approaches T . By using as numéraire

πt(1T ), we construct the forward measure with horizon T and we denote it by F (see Geman,

1As explained by Émery (1980), Z turns out to be the martingale transform of some martingale, via an
integrable predictable process.
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El Karoui, and Rochet, 1995, for the theory of numéraire changes). This probability measure

is equivalent to Q and we denote its Radon-Nikodym derivative with respect to P by GT .

Importantly, GT belongs to L2(FT ) because e−
∫ T
0 YτdτLT is included in L2(FT ). Moreover,

we set Gt = Et[GT ] for any t and we define Gt,T = GT /Gt. See details in Appendix A.1.

Using the forward measure, the stochastic discount factor rewrites asMt = er
T
t (T−t)−rT0 TGt

and the pricing kernel in any time interval [s, t] with s 6 t 6 T becomes

Ms,t = er
T
t (T−t)−rTs (T−s)Gs,t.

In addition, any attainable FT -measurable payoff hT with finite EF [|hT |] has no-arbitrage

price at time t given by

πt (hT ) = e−r
T
t (T−t)EFt [hT ] . (1)

We finally introduce some numéraire changes based on the investment horizon t ∈ [0, T ].

We already defined the process {Gt}t∈[0,T ] from the Radon-Nikodym derivative of the for-

ward measure with respect to P . We take as numéraire the no-arbitrage price process of

a (virtual) security generating the payoff Gt and we denote by Qt the related risk-adjusted

measure. Its Radon-Nikodym derivative with respect to the physical measure is

Itt =
G2
t

E
[
G2
t

] .
For all τ ∈ [0, t] we define Itτ = Eτ [Itt ] and Itτ,t = Itt/I

t
τ . Note that, by moving t, we obtain

a continuum of risk-adjusted measures Qt associated with increasing horizons. See the

detailed derivation in Appendix A.1.

2.2 The Hilbert modules H t
s and linear pricing functionals

We adopt the forward measure and we consider the filtered probability space (Ω,F ,F, F ).

We fix an instant s ∈ [0, T ] and develop some tools to deal with conditioning information

in Fs. We start with considering at any time t ∈ [s, T ] the conditional L1-space L1
s(Ft) =

{f ∈ L0(Ft) : Es[|f |] ∈ L0(Fs)}. Cerreia-Vioglio, Kupper, Maccheroni, Marinacci, and

Vogelpoth (2016) show that L1
s(Ft) is an L0-module with the multiplicative decomposition

L1
s(Ft) = L0(Fs)L1(Ft).2

In our construction, we consider adapted processes that take values in L1
s(Ft). An

important role will be played by conditional (or generalized) martingales. We use this

terminology for processes ẑ defined in the time interval [s, t] with all the properties of

2Clearly, L1
s(Ft) contains all functions f in L1(Ft): in this case Es[|f |] ∈ L1(Fs). In general, however, the

conditional expectation is defined for random variables that are merely in L0(Ft) as discussed, for instance,
in Chapter II, §7 of Shiryaev (1996).
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martingales except for integrability, which is replaced by the weaker condition Es[|ẑ(τ)|] ∈
L0(Fs) for all τ ∈ [s, t]. See, for instance, Chapter VII, §1 of Shiryaev (1996). In finance a

classical example of (conditional) martingale is provided by forward prices for the settlement

date t (see Section 9.6 in Musiela and Rutkowski, 2005). With this property in mind, for

any t ∈ [s, T ] we define the space

Ht
s =

{
conditional F−martingale ẑ : [s, t]→ L1

s (Ft) , EQ
t

s

[
ẑ2t
]
∈ L0 (Fs)

}
,

Ht
s contains the forward prices of traded assets with square integrable terminal value under

Qt. Interestingly, Ht
s can be characterized in differential terms (see Proposition 2.4 in

Marinacci and Severino, 2018, about weak time-derivatives). For our construction the

relation between Ht1
s and Ht2

s with t1 6 t2 is crucial: if ẑ belongs to Ht2
s , then its restriction

on [s, t1] belongs to Ht1
s . Indeed, the conditional expectation of ẑ2t1 is always defined as an

extended real random variable and Es[G2
t1 ẑ

2
t1 ] 6 Es[G2

t2 ẑ
2
t2 ].

Fixed t ∈ [s, T ], Ht
s is a pre-Hilbert module on the algebra L0(Fs) when we define the

outer product · : L0(Fs) ×Ht
s → Ht

s and the L0-valued inner product 〈 , 〉ts : Ht
s ×Ht

s →
L0(Fs) respectively by

as · ẑ = asẑ, 〈ẑ, v̂〉ts = EQ
t

s [ẑtv̂t] .

The homogeneity of the inner product with respect to Fs-measurable variables, i.e.

〈as · ẑ, v̂〉ts = as 〈ẑ, v̂〉ts

for any ẑ, v̂ in Ht
s and as in L0(Fs), is relevant for financial applications because it allows

for contingent strategies in portfolio theory. Moreover, the inner product structure delivers

a natural notion of orthogonality: two processes ẑ, v̂ in Ht
s are orthogonal when

〈ẑ, v̂〉ts = EQ
t

s [ẑtv̂t] = 0.

Our inner product mimics the conditional structure of Hansen and Richard (1987), who

built up a conditional asset pricing framework under the physical measure. Here we use

a different probability measure and we work directly on the terminal values of forward

martingale processes. These features drive our decomposition of returns and the related

mean-variance frontier.

Importantly, Ht
s is a selfdual pre-Hilbert module or, more simply, a Hilbert module. Self-

duality is the property that allows for an inner product representation of any L0-linear and

bounded functional on Ht
s (see Definition 2 in Cerreia-Vioglio, Maccheroni, and Marinacci,

2017).
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Proposition 1 Ht
s is a selfdual pre-Hilbert module on L0(Fs).

Selfduality provides an inner product representation of linear pricing functionals, a fact

which is consistent with the asset pricing literature: see Harrison and Kreps (1979), Ross

(1978) and Hansen and Richard (1987) among the others.

To elucidate this point, fix t = T and consider an FT -measurable payoff hT with EQ
T

s [h2T ]

in L0(Fs). This payoff is the terminal value of the forward price process ĥ = {ĥτ}τ∈[s,T ] in

HT
s defined by ĥτ = EFτ [hT ] at any τ . Hence, the no-arbitrage price of eq. (1) induces the

L0-valued functional Πs : HT
s → L0(Fs) such that

Πs : ĥ 7→ e−r
T
s (T−s)ĥs.

Πs is a positive, L0-linear bounded functional and, in line with the selfduality of HT
s , it

is represented by the L0-valued inner product

Πs

(
ĥ
)

=
〈
ẑ, ĥ
〉T
s
, ẑτ =

e−r
T
s (T−s)Es

[
G2
T

]
Gs

1

Gτ
, τ ∈ [s, T ]

for any ĥ ∈ HT
s . Since 1/G belongs to HT

s , also z does and the L0-valued inner product

representation is well-defined. The process 1/G will play a fundamental role in our de-

composition of excess returns. We will investigate the financial meaning of this object in

Subsection 3.2.

3 Return decomposition

In this section we build the relation between returns and processes in Ht
s with t ∈ [s, T ].

We, then, orthogonally decompose any Ht
s by exploiting the L0-valued inner product 〈 , 〉ts.

As illustrated in Section 3.3 of Cerreia-Vioglio, Maccheroni, and Marinacci (2019), the

decomposition of a Hilbert module needs topological conditions in order to be well-defined.

Nevertheless, in case H is a selfdual L0-module and M is a finitely generated submodule, the

decomposition H = M ⊕M⊥ is well-posed (here M⊥ denotes the orthogonal complement

of M in H). That is the case of our interest, because we deal with submodules generated by

single returns, specifically g(s) and e(s) that we define in Subsections 3.2 and 3.3. Once the

decomposition of modules is established in Theorem 3, we determine in Corollary 4 a risk-

adjusted decomposition of asset returns. Our result parallels Hansen and Richard (1987)

decomposition (which, on the contrary, exploits the physical measure) in a conditional

setting with stochastic rates.

Remark. We assume that the forward measure is different from the physical one and that

a security with terminal payoff 1/Ms,T is traded at any instant t ∈ [s, T ]. Equivalently,

there exists an admissible self-financing portfolio with value 1/Ms,T at time T .
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3.1 Return definition

We consider the no-arbitrage price process induced by an attainable payoff hT at time T such

that EQ
T

s [h2T ] ∈ L0(Fs). We want to compute the return associated with hT at any time t

between s and T . This return is taken into account, for instance, by a trader that purchased

a European derivative with payoff hT at time s and is willing to sell it at time t. Formally,

the return process u(s) = {uτ (s)}τ∈[s,T ] is the ratio of no-arbitrage prices, i.e. uτ (s) =

πτ (hT )/πs(hT ), it satisfies, for all τ ∈ [s, T ], the relation Es [Ms,τuτ (s)] = 1 and EQ
T

s [u2T ] ∈
L0(Fs). Moreover, u is associated with the conditional martingale {Ms,τuτ (s)}τ∈[s,T ] whose

value at time s is equal to 1. Thus, to develop our theory, we abstract from the previous

example and provide the following definition of return.

Definition 2 We call return process any adapted process u(s) such that the process ûT (s)

defined, for all τ ∈ [s, T ], by

ûTτ (s) =
Ms,τ

Gs,τ
uτ (s) =

πs (1T )

πτ (1T )
uτ (s) (2)

belongs to HT
s and ûTs (s) = 1.

Definition 2 relies on the bijection between returns and normalized conditional F -

martingales (or, equivalently, forward prices) in HT
s . Indeed, given any ûT (s) ∈ HT

s

with ûTs (s) = 1, by eq. (2) we can construct the process {uτ (s)}τ∈[s,T ] that satisfies

Es [Ms,τuτ (s)] = 1 at any time τ as well as the square summability requirement that we

mentioned before. Such a return materializes in the market when it can be replicated by

an admissible self-financing portfolio of traded securities.

Example. Suppose that Es[G4
T ] belongs to L0(Fs) and consider a payoff at T that co-

incides with the pricing kernel Ms,T . This payoff is fundamental in the mean-variance

decomposition provided by Hansen and Richard (1987). The related return process and the

conditional martingale in HT
s are

uτ (s) =
Eτ [Mτ,TMs,T ]

Es
[
M2
s,T

] =
Eτ
[
G2
T

]
Ms,τEs

[
G2
T

] , ûTτ (s)
Eτ
[
G2
T

]
Gs,τEs

[
G2
T

] .

Return processes define conditional martingales also in any time subinterval [s, t], with

t preceding T . In fact, by defining ût(s) as the restriction of ûT (s) on [s, t], we have that

ût(s) ∈ Ht
s and ûts(s) = 1.
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3.2 The log optimal return g(s)

We define the submodule of HT
s associated with zero-price payoffs (or excess returns)

◦
HT
s =

{
ι̂T (s) ∈ HT

s : Es [Ms,T ιT (s)] = 0
}

=
{
ι̂T (s) ∈ HT

s : Es
[
Gs,T ι̂

T
T (s)

]
= 0
}

=

{
ι̂T (s) ∈ HT

s : EQ
T

s

[
1

GT
ι̂TT (s)

]
= 0

}
=

{
ι̂T (s) ∈ HT

s :

〈
1

G
, ι̂T (s)

〉T
s

= 0

}
,

where ι(s) and ι̂T (s) are related as above and 1/G belongs to HT
s because G/G constitutes

the martingale identically equal to 1. After a normalization, we define the process ĝT (s) in

HT
s and the associated return process respectively by

ĝTτ (s) =
Gs
Gτ

, gτ (s) =
1

Ms,τ
.

This return refers to an asset with terminal payoff 1/Ms,T , which is assumed to be traded

in the market. As expected, the process 1/G is the one that permits the inner product

representation of pricing functionals described at the end of Subsection 2.2. Moreover,

1/Ms,T is the optimal terminal wealth of an investor that maximizes E[logwT ] over all

attainable wealth profiles (i.e. replicable payoffs) wT , given an initial wealth equal to 1,

that is 1 = E[Ms,TwT ]. See Chapter 20 of Björk (2004). Since the log optimal portfolio

is the admissible self-financing strategy that generates the optimal wealth profile, we can

refer to g as the log optimal return.

Observe also that any ι̂T (s) ∈
◦
HT
s satisfies ι̂Ts (s) = 0 since ι̂Ts (s) = Es[Gs,T ι̂TT (s)] = 0.

In addition, the module HT
s orthogonally decomposes as

HT
s = spanL0

{
ĝT (s)

}
⊕
◦
HT
s .

When we restrict ourselves to a nearer horizon t, excess returns are associated with the

submodule of Ht
s defined by

◦
Ht
s =

{
ι̂t(s) ∈ Ht

s : Es [Ms,tιt(s)] = 0
}

=

{
ι̂t(s) ∈ Ht

s :

〈
1

G
, ι̂t(s)

〉t
s

= 0

}
.

Consistently, ĝt(s) is defined by the restriction of ĝT (s) on [s, t].

3.3 The mean excess return e(s)

Since the measures P and F do not coincide, GT is different from 1. In this case, the

process constantly equal to 1 in the time interval [s, T ] differs from ĝT (s) and it belongs to
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HT
s because G is a P -martingale and Es[G2

T ] ∈ L0(Fs). Such process is associated with the

return process

fτ (s) =
πτ (1T )

πs (1T )

related to a zero-coupon bond with expiry T . This instrument can be considered as the

riskless security in our stochastic rates setting. We formalize this intuition in Section 6

by solving the optimal allocation problem of a (possibly prudent) investor with quadratic

utility.

Therefore, we are allowed to define êT (s) as the orthogonal projection of 1 on the

submodule
◦
HT
s i.e.

êT (s) = proj ◦
HT
s

1,

meaning that êTs (s) = 0 and EQ
T

s [(1 − êTT (s))ι̂TT (s)] = 0 for all ι̂T (s) in
◦
HT
s . Since the

orthogonal projection of 1 on spanL0{ĝT (s)} is {Gs/Gτ}τ∈[s,T ], we have 1 = êT (s) +Gs/G

so that

êT (s) = 1− ĝT (s).

Moreover,
◦
HT
s decomposes as

◦
HT
s = spanL0

{
êT (s)

}
⊕
{
n̂T (s) ∈

◦
HT
s : EQ

T

s

[
êTT (s)n̂TT (s)

]
= 0
}

= spanL0

{
êT (s)

}
⊕
{
n̂T (s) ∈

◦
HT
s : EQ

T

s

[
n̂TT (s)

]
= 0
}

from the definition of êT (s). Similarly to before, we define e(s) by

eτ (s) =
πτ (1T )

πs (1T )
êTτ (s) = fτ (s)− gτ (s),

which embodies the meaning of mean excess return.

At the shorter horizon t, we define the conditional martingale êt(s) as

êt(s) = proj ◦
Ht
s

1

with the orthogonality induced by Qt, namely EQ
t

s [(1 − êtt(s))ι̂tt(s)] = 0 for all ι̂t(s) in
◦
Ht
s.

In addition, êt(s) coincides with the restriction of êT (s) on the time interval [s, t], that

is êt(s) = 1 − ĝt(s). We show some useful properties of ĝt(s) and êt(s) in Lemma 17 in

Appendix B.

3.4 Orthogonal decompositions of returns

The orthogonality in Ht
s allows us to determine a conditional decomposition of asset returns

under the risk-adjusted measure Qt. To achieve this goal, we start from the decomposition

of conditional forward martingales.
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Theorem 3 (Martingale decomposition) ût(s) belongs to Ht
s and ûts(s) = 1 if and only

if there exist ωs ∈ L0(Fs) and n̂t(s) ∈
◦
Ht
s such that

EQ
t

s

[
n̂tt(s)

]
= EQ

t

s

[
ĝtt(s)n̂

t
t(s)
]

= EQ
t

s

[
êtt(s)n̂

t
t(s)
]

= 0

and

ût(s) = ĝt(s) + ωsê
t(s) + n̂t(s).

A straightforward application of Theorem 3 delivers an orthogonal decomposition of

asset returns in the time window [s, t], according to the risk-adjusted measure Qt.

Corollary 4 (Return decomposition) u(s) is a return in [s, t] if and only if there exist

ωs ∈ L0(Fs) and n̂t(s) ∈
◦
Ht
s such that

EQ
t

s

[
er
T
t (T−t)nt(s)

]
= EQ

t

s

[
e2r

T
t (T−t)gt(s)nt(s)

]
= EQ

t

s

[
e2r

T
t (T−t)et(s)nt(s)

]
= 0

with nτ (s) = n̂tτ (s)Gs,τ/Ms,τ for all τ ∈ [s, t] and

u(s) = g(s) + ωse(s) + n(s). (3)

The proof of Theorem 3 exploits the definition of the projection coefficient ωs in L0(Fs),
that turns out to be

ωs = πs (1T )Es
[
G2
t

] EQts [ut(s)/πt (1T )]− EQ
t

s [gt(s)/πt (1T )]

vars (Gt)
.

In particular, when asset returns are computed on the whole trading period [s, T ], we obtain

the same decomposition of eq. (3) with

EQ
T

s [nT (s)] = EQ
T

s [gT (s)nT (s)] = EQ
T

s [eT (s)nT (s)] = 0

and

ωs = πs (1T )Es
[
G2
T

] EQTs [uT (s)]− EQ
T

s [gT (s)]

vars (GT )
,

which is reminiscent of the Sharpe ratio between uT (s) and gT (s) under the measure QT .

In this case ωs is uniquely determined by EQ
T

s [uT (s)].

4 Mean-variance returns

A simple outcome of Corollary 4 is that, among all return processes u(s) in the period [s, T ],

g(s) is the one with minimum conditional second moment according to the measure QT .

Indeed, any u(s) satisfies

EQ
T

s

[
u2T (s)

]
= EQ

T

s

[
g2T (s)

]
+ ω2

sEQ
T

s

[
e2T (s)

]
+ EQ

T

s

[
n2T (s)

]
> EQ

T

s

[
g2T (s)

]
.
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In general, our purpose is to provide a characterization of returns with minimum condi-

tional variance, once the conditional expectation is fixed, under the measure Qt related to

the horizon into account. As it is well-known, mean-variance portfolio analysis (under the

physical measure) has its roots in the seminal works by Markowitz (1952) and Tobin (1958)

and had a huge development in the last decades. With respect to the existing literature,

the convenience of our approach relies in the time consistency property that we describe in

Subsection 4.1. Subsection 4.2 illustrates a Two-fund Separation Theorem and a β-pricing

representation of excess returns.

Definition 5 We say that a return process u(s) is on the mean-variance frontier (or it

is a mean-variance return) at time T when it minimizes varQ
T

s (uT (s)) for some given

EQ
T

s [uT (s)] in L0(Fs). In that case, we consistently say that the associated ûT (s) is a

conditional mean-variance martingale in [s, T ]. Similarly, mean-variance returns on the

shortened time interval [s, t] involve EQ
t

s [ut(s)/πt(1T )] and varQ
t

s (ut(s)/πt(1T )).

We prove the results for a generic horizon t, beginning with conditional martingales.

Theorem 6 (Mean-variance martingales) Consider ût(s) ∈ Ht
s such that EQ

t

s [ûtt(s)] =

ks for some ks ∈ L0(Fs). Among them, the conditional martingale that minimizes varQ
t

s (ûtt(s))

is

ût(s) = ĝt(s) + ωsê
t(s) with ωs =

ksEs
[
G2
t

]
−G2

s

vars (Gt)
.

From Theorem 6 we easily deduce the characterization of mean-variance returns at t.

Corollary 7 (Mean-variance returns) Consider returns u(s) such that EQ
t

s [ut(s)/πt (1T )] =

hs for some hs ∈ L0(Fs). Among them, the return that minimizes varQ
t

s (ut(s)/πt(1T )) is

u(s) = g(s) + ωse(s) with ωs =
hsπs (1T )Es

[
G2
t

]
−G2

s

vars (Gt)
.

As expected, the mean-variance frontier associated with the maturity time T requires no

discounting in first and second moments. In fact, among returns u(s) such that EQ
T

s [uT (s)] =

hs, the return

u(s) = g(s) + ωse(s), ωs =
hsπs (1T )Es

[
G2
T

]
−G2

s

vars (GT )
.

minimizes varQ
T

s (uT (s)). As an example, consider the zero-coupon return process f(s) on

the period [s, T ], which satisfies

f(s) = g(s) + e(s).

12



By Corollary 7, f(s) minimizes the conditional variance of any return u(s) such that

EQ
T

s [uT (s)] = 1/πs(1T ).

Finally, note that at any horizon t mean-variance returns can be easily identified by

their expectation under the physical measure. Indeed, if we fix Es [ut(s)] = h̃s, then the

weight ωs is univocally determined by

ωs =
h̃s − Es [gt(s)]

Es [et(s)]
. (4)

4.1 Time consistency

A fundamental property of our approach to mean-variance portfolio analysis is time consis-

tency. Indeed, if a return process belongs to our mean-variance frontier at date T , then it is

on the mean-variance frontier at any other previous time t, too. This feature is ultimately

due to the fact that the decomposition of Theorem 3 involves the whole return process in

the time range [s, T ] and so there is a mechanical overlap with the decompositions built at

shorter horizons.

The time consistency of portfolio or consumption choices is an old issue of economic

theory. For example, a first distinction between precommitment and consistent planning

can be retrieved in the seminal work by Strotz (1955). In addition, Mossin (1968) highlights

the inconsistency of multiperiod mean-variance analysis because the quadratic utility does

not satisfy the Bellman principle of optimality. These important issues are also discussed

in Basak and Chabakauri (2010) and Czichowsky (2013).

In our framework the collection of risk-adjusted measures Qt, when t varies from s to T ,

is the key tool for modeling the time consistency of returns. We first deal with conditional

forward martingales.

Proposition 8 (Martingales time consistency) Let s 6 t 6 T . If ûT (s) is a condi-

tional mean-variance martingale in [s, T ], then ût(s) is a conditional mean-variance mar-

tingale in [s, t].

We now establish time consistency of asset returns.

Corollary 9 (Returns time consistency) Consider returns in the interval [s, T ]. A

mean-variance return at T is also a mean-variance return at any t ∈ [s, T ].

From the standpoint of interpretation, we can set s as today and consider portfolios

with maturity T of one year. Moreover, t may identify a six-month horizon from now. We

build our six-month and one-year horizon mean-variance frontiers, based on the information

13



available today. However, Corollary 9 ensures that portfolios on the yearly frontier are also

on the six-month frontier. This feature is absent in classical mean-variance analysis that

exploits the decomposition of returns based on the physical measure. In fact, the standard

construction does not provide any relation between the decompositions of returns at different

horizons. On the contrary, the methodology that we propose relies on the decomposition of

the underlying forward martingale processes and so return representations at different dates

are interrelated. The practical benefit of our approach is that the arising mean-variance

frontiers are generated by the same two processes across a multiplicity of horizons.

4.2 Additional properties

We state and prove a Two-fund Separation Theorem for our mean-variance frontier. The-

orem 10 establishes in our setting the celebrated result by Merton (1972) and makes the

implementation of the frontier easier by replacing the mean excess return e(s) with the

return f(s) of a pure discount T -bond.

Theorem 10 (Two-fund Separation) u(s) is a mean-variance return if and only if

u(s) = αsv(s) + (1− αs) z(s)

for some mean-variance returns v(s), z(s) and αs ∈ L0(Fs). In particular,

u(s) = αsg(s) + (1− αs) f(s)

where αs = 1− ωs and ωs is obtained from Corollary 7.

In few words, g(s) and f(s) span the mean-variance frontier of returns at any horizon.

We finally provide a simple β-pricing representation for excess returns at time t. We

employ g(s) as benchmark return and we obtain an Fs-measurable coefficient βs.

Proposition 11 Consider a return u(s) and fix t ∈ [s, T ]. Then,

EQ
t

s

[
er
T
t (T−t)ut(s)

]
− erTs (T−s) = βs

(
EQ

t

s

[
er
T
t (T−t)gt(s)

]
− erTs (T−s)

)
(5)

where βs in L0(Fs) is

βs = covQ
t

s

(
er
T
t (T−t)gt(s), e

rTt (T−t)ut(s)
)/

varQ
t

s

(
er
T
t (T−t)gt(s)

)
.

When returns are computed on the whole time window [s, T ], the β-pricing representa-

tion reduces to

EQ
T

s [uT (s)− fT (s)] = βsEQ
T

s [gT (s)− fT (s)]

14



where βs in L0(Fs) is

βs =
covQ

T

s (gT (s), uT (s))

varQ
T

s (gT (s))
.

This coefficient is the one implied by the Two-Fund Separation Theorem about returns on

the mean-variance frontier at the terminal date.

Appendix A.2 illustrates additional results about the mean-variance representation pro-

vided by Corollary 7. In particular, Proposition 15 describes the relation between the

conditional and the unconditional version of the mean-variance frontier. Indeed, when

unconditional second moments of returns are finite, unconditional mean-variance returns

belong to the conditional frontier, too.

As for excess returns, one may also be interested in the shape of their mean-variance

frontier per se. Proposition 16 shows that the mean-variance frontier of excess returns at

time T is exactly spanned by e(s). See again Appendix A.2.

5 Simulations: mean-variance optimization, time consistency
and transaction costs

In this section we consider a multiperiod mean-variance portfolio problem in the time in-

terval [s, T ]. Interest rates are stochastic and only buy-and-hold investment strategies set

at time s are allowed. Our investor may be thought as a manager or a company that

aims at building portfolios with a target mean across a sequence of maturities t1, t2 . . . , tN

with s < t1 < t2 < · · · < tN = T . Each of this portfolios must be optimal in terms of

a mean-variance criterion in the time window under consideration. The need of designing

such a term structure of portfolios may come from intertemporal hedging reasons due, e.g.

to cashflow management or medium-term production plans. The asset allocation across

multiple horizons is decided ex ante because of costly, or even forbidden, rebalancing. A

detailed example in the context of life annuities is provided in Subsection 5.3.

Several dynamic extensions of mean-variance optimization have been proposed in the

literature. Remarkable examples are given by Li and Ng (2000), Zhou and Li (2000) and

Leippold, Trojani, and Vanini (2004) among the others. Several time periods are considered

and the target return is usually achieved through the selection of suitable self-financing

portfolios. However, differently from our approach, no investment target at intermediate

horizons is considered.

In our problem, the investor builds a portfolio with return

N∑
i=1

λ(i)s u
(i)
t (s)
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at any t ∈ [s, T ], where each λ
(i)
s ∈ L0(Fs) is the weight of the subportfolio i, i.e. the one

with return u(i)(s), in the overall portfolio. Moreover, each return u(i)(s) solves

min vars

(
u
(i)
ti

(s)
)

sub Es
[
u
(i)
ti

(s)
]

= h(i)s

with h
(i)
s ∈ L0(Fs) given, for i = 1, . . . , N . The weights λ

(i)
s are positive, they sum up to 1

and, in case the overall portfolio is equally-weighted, λ
(i)
s = 1/N for all i.

The unique solution to this optimization problem is achieved by subportfolios on the

classical mean-variance frontier of Hansen and Richard (1987): at each date ti

u
(i)
ti

(s) =
Ms,ti

Es
[
M2
s,ti

] + w̃(i)
s

(
1− e−r

ti
s (ti−s) Ms,ti

Es
[
M2
s,ti

]) , w̃(i)
s ∈ L0 (Fs) .

By employing the return of zero-coupon bonds with expiry ti, the Two-fund Separation

Theorem permits to rewrite the classical mean-variance frontier as

u
(i)
ti

(s) = α̃(i)
s

Ms,ti

Es
[
M2
s,ti

] +
(

1− α̃(i)
s

)
fti(s)

with α̃
(i)
s = 1− πs(1ti)w̃

(i)
s .3

At each maturity ti, the initial implementation of a subportfolio that delivers the return

u(i)(s) requires the replication, by self-financing portfolio strategies, of two payoffs at ti: one

coincides with the pricing kernel Ms,ti , the other is the terminal value of a zero-coupon ti-

bond. Considering the whole sequence of maturities in the problem, 2×N payoffs need to be

replicated in order to implement the optimal asset allocation (or, at least, N payoffs if all the

needed pure discount bonds are traded in the market). As a result, depending on the severity

of market incompleteness, the optimal solution may be unattainable. The requirement of

replicating 2×N payoffs via existing securities may be too demanding in general. This fact

worsen the practical implementation of mean-variance efficient portfolios, which already

suffers from notorious pitfalls, as described by Michaud (1989), Best and Grauer (1991)

and DeMiguel, Garlappi, and Uppal (2007), among the others. Indeed, the standard mean-

variance portfolio weights are often unstable and sensitive to small changes in the estimate of

returns moments. The practical implementation can, then, lead to suboptimal investments.

Hereby, we propose an alternative strategy by exploiting our time-consistent mean-

variance frontier. Although theoretically suboptimal, our frontier requires solely the repli-

cation of two payoffs at T , whatever the number N of maturities involved (or only one

3Indeed, such pure-discount bonds belong to the frontier since

fti(s) =
Ms,ti

Es
[
M2
s,ti

] +
1

πs (1ti)

(
1− e−r

ti
s (ti−s) Ms,ti

Es
[
M2
s,ti

]) .

16



payoff if the zero-coupon T -bond is traded in the market). When asset replication is costly

or difficult, this feature constitutes a sizable advantage, that may compensate the loss of

mean-variance optimality with respect to the (possibly unattainable) classical solution. In

particular, we consider subportfolios with returns

v
(i)
t (s) = gt(s) + ω(i)

s et(s), t ∈ [s, T ],

where each ω
(i)
s is chosen so that the conditional expectation of v

(i)
ti

(s) meets the target h
(i)
s

as in eq. (4). In line with Theorem 10, we build our subportfolios by exploiting the return

g(s) of the log optimal portfolio and the return f(s) of a zero-coupon T -bond. These two

financial instruments are employed at any intermediate maturity ti, as a consequence of time

consistency. We finally compare the performance of the two families of subportfolios u(i)(s)

and v(i)(s) by considering the transaction costs and their impact on the Sharpe ratios.

Specifically, to quantify the advantage of using solely two securities in the time-consistent

strategy, we assume that transaction costs are present. Such commissions are composed by

trading and replication costs, similarly to Irle and Sass (2006).

Trading costs are constant for every asset unit and apply to both short and long po-

sitions. Their total amount is proportional to traded volumes. In our simulations, the

implementation of each classical mean-variance subportfolio i generates the trading costs

c(|α̃(i)
s | + |1 − α̃(i)

s |) with c > 0. The analogous expression with α
(i)
s delivers the trading

costs of the time-consistent mean-variance return v(i)(s).

As for the replication costs, we assume that the design of the replication strategies

for gT (s) and Ms,ti/Es[M2
s,ti ] at any maturity ti entails a positive fixed cost C for any

(possibly linearly independent) security. Therefore, the implementation of each classical

mean-variance subportfolio i requires the additional expenditure of C. On the contrary, if

we proportionally spread the replication cost of gT (s) across the horizons t1, . . . , tN , each

time-consistent subportfolio i needs to bear the cost λ
(i)
s C. We attribute no cost to the

possible replication of the pure discount bonds used in the two frontiers. As a result,

each mean-variance optimal subportfolio i and each time-consistent subportfolio i have

commissions, respectively,

C + c
(∣∣∣α̃(i)

s

∣∣∣+
∣∣∣1− α̃(i)

s

∣∣∣) and λ(i)s C + c
(∣∣∣α(i)

s

∣∣∣+
∣∣∣1− α(i)

s

∣∣∣) . (6)

Accordingly, the overall portfolios have commissions:

CN + c
N∑
i=1

λ(i)s

(∣∣∣α̃(i)
s

∣∣∣+
∣∣∣1− α̃(i)

s

∣∣∣) and C + c
N∑
i=1

λ(i)s

(∣∣∣α(i)
s

∣∣∣+
∣∣∣1− α(i)

s

∣∣∣) .
In terms of risk/return trade-off, at any maturity ti we consider a modified Sharpe ratio

given by the difference of the Sharpe ratio and the ratio between transaction costs and
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standard deviation. In this way, the expected return of each subportfolio i is reduced by

the proper commissions of eq. (6):

modified Sharpe ratio = Sharpe ratio− transaction costs

standard deviation
.

The modified Sharpe ratio can be negative even if the Sharpe ratio is positive. Interestingly,

the modified Sharpe ratios can reverse the relations between the Sharpe ratios of the clas-

sical and the time-consistent mean-variance optimal strategies, making the time-consistent

approach valuable. This happens in the simulations of Subsections 5.2 and 5.3. Subsec-

tion 5.1 precisely describes the market in which we set the simulations and Subsection 5.4

concludes with a comparison of measures Q, F and QT in the market under scrutiny.

5.1 Reference market

As in Appendix B of Brigo and Mercurio (2006), we assume that short-term rates move as

in Vasicek (1977) model in the time interval [s, T ] with positive parameters k, θ, σ. Then,

we consider a stock price X that follows a geometric Brownian motion with volatility η >

0, correlated with interest rates shocks. The instantaneous correlation between the two

underlying Wiener processes is φ. We orthogonalize the two sources of randomness and

consider, without loss of generality, the dynamics dXt = XtYt dt+ ηXt

[
φdWQ

t +
√

1− φ2dZQt
]

dYt = k (θ − Yt) dt+ σdWQ
t ,

where WQ and ZQ are independent Wiener processes. A money market account with

dynamics dBt = YtBtdt is also present. A more general model with two risky stocks is

illustrated in Appendix C.1.

Yields to maturity are affine, i.e. rTt (T − t) = −A(t, T ) +B(t, T )Yt, with

A(t, T ) =

(
θ − σ2

2k2

)
(B(t, T )− T + t)− σ2

4k
B2(t, T )

and B(t, T ) = (1 − e−k(T−t))/k. The pure discount T -bond price at time t is function of t

and Yt, obtained from Itô’s formula. Hence, beyond the money market account, the assets

that generate the market are dXt = XtYt dt+ ηXt

[
φdWQ

t +
√

1− φ2dZQt
]

dπt (1T ) = πt (1T )Ytdt− πt (1T )B(t, T )σdWQ
t .

(7)

At the same time, under the physical measure,{
dXt = Xtµ

X
t dt+ ηXt

[
φdWP

t +
√

1− φ2dZPt
]

dπt (1T ) = πt (1T )µPt dt− πt (1T )B(t, T )σdWP
t ,
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where µX and µP are adapted processes. They are related to the drifts under Q via the

bivariate process of market price of risk [νW , νZ ]′ such that[
dWQ

t

dZQt

]
=

[
νWt

νZt

]
dt+

[
dWP

t

dZPt

]
.

Specifically, [
ηφ η

√
1− φ2

−B(t, T )σ 0

][
νWt

νZt

]
=

[
µXt − Yt
µPt − Yt

]
so that

νWt = − µ
P
t − Yt

B(t, T )σ
, νZt =

µXt − Yt − ηφνWt
η
√

1− φ2
. (8)

The Radon-Nikodym derivative of Q with respect to P is, at any t ∈ [0, T ],

Lt = e
− 1

2

∫ t
0

[
(νWτ )

2
+(νZτ )

2
]
dτ−

∫ t
0 ν

W
τ dWP

τ −
∫ t
0 ν

Z
τ dZ

P
τ

and we assume that the Novikov condition is satisfied, that is E[e
1
2

∫ T
0 [(νWt )2+(νZt )2]dt] is finite.

Moreover, we postulate that µPt = (1− ξB(t, T )σ)Yt for some ξ > 0 so that νWt = ξYt, in

line with the usual approach of Vasicek short-term rates. Finally, the dynamics of the

pricing kernel are given by

dMs,t = −YtMs,tdt− νWt Ms,tdW
P
t − νZt Ms,tdZ

P
t .

The parameters that we use in the simulations of the interest rate process are k = 1,

θ = 0.05 and σ = 0.01 with initial value Y0 = 0.02, on a monthly time grid. Moreover, we

set η = 0.1 and φ = 0.1, and we assume that the drift of the stock price under the physical

measure is µXt = Yt + 0.05.

5.2 A six-horizon mean-variance optimization

In this set of simulations, we fix s = 0 and consider an equally-weighted portfolio over six

maturities: N = 6 and λ
(i)
s = 1/N for all i = 1, . . . , 6. We employ a monthly time grid

and horizons t1, . . . , t6 associated with six subsequent semesters. We set the target means

equal to h
(i)
0 = 1.06 for i = 1, . . . , 6. In other words, we are assuming that the investor

wants to obtain a 6% flat return at the end of each of six subsequent semesters. She plans

to do so by investing in 6 equally weighted buy-and-hold subportfolios built at s = 0. We

further assume that the cashflows obtained at the end of each semester from the liquidation

of the related subportfolio are not re-invested. Implementation and transaction costs of the

strategies are discussed later on.
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Figure 1: Red (resp. blue) lines, bars and boxes refer to the classical (resp. time-consistent) mean-
variance solution for the problem of Subsection 5.2. Standard deviations, Sharpe ratios and modified

Sharpe ratios are scaled by the weights λ
(i)
0 for all i = 1, . . . , 6. 90% confidence intervals for these

variables are represented. The top-right panel represents the transaction costs of the time-consistent
portfolio (blue for replication costs, light blue for trading costs) and of the mean-variance portfolio
(red for replication costs, light red for trading costs). Medium panels contain the box-and-whisker

plot at 25th and 75th percentiles and the bar plot of loadings |α(i)
s | and |α̃(i)

s | at all horizons.
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We simulate both the classical and the time-consistent multiperiod portfolios described

above. We, then, repeat the exercise by employing, in total, 30 different seeds for the ini-

tial Gaussian random sampling to obtain a sample of averages and standard deviations of

each subportfolio i with return u(i)(0) and horizon ti, for i = 1, . . . , 6. Sharpe ratios are

computed by using as reference risk-free securities pure discount bonds at increasing matu-

rities. Results are summarized in Figure 5.2, where standard deviations, Sharpe ratios and

modified Sharpe ratios are scaled by the weights λ
(i)
s = 1/N . Every simulated subportfolio

matches perfectly the target means h
(i)
0 at the proper horizon i = 1, . . . , 6. As predicted

by the theory, classical mean-variance subportfolios display lower standard deviations with

respect to our time-consistent asset allocations, whose advantage relies on a parsimonious

implementation.

In our simulations the loadings of the time-consistent subportfolios are smaller than

the ones of the classical mean-variance strategies, requiring to buy/sell fewer assets. We

visualize this fact in the medium panels of Figure 5.2, where we plot the absolute values

of α
(i)
s and α̃

(i)
s at each maturity ti. The graphs depict the units of risky assets - i.e. the

ones associated with gT (s) and Ms,ti/Es[M2
s,ti ] respectively - contained in each subportfolio.

The exposure to the risky securities is higher at maturities near in time. However, at any

horizon, the loadings in the time-consistent subportfolios are lower than the ones in the

classical subportfolios (with slightly lower dispersion). Consequently, the implementation

of the portfolio with returns v(i)(s) involves narrower long (or short) positions, both in g(s)

and in f(s), a valuable feature in case of short-selling constraints.

The medium panels of Figure 5.2 give also an idea of the magnitude of the transaction

costs of both portfolios that we summarize in the top-right panel by setting c = $0.005

and C = $0.015. Under this assumption, by considering an initial investment of $100, total

transaction costs roughly amount to $10 if the investor builds the portfolios according to

the standard mean-variance frontier, and to $2 if the investor exploits our time-consistent

frontier.

The commission shrinkage of the time-consistent approach impacts the risk/return trade-

off between the two strategies, as we can see in the bottom panels of Figure 5.2. Indeed,

after including the transaction costs, the modified Sharpe ratio indicates that the time-

consistent solution is the best performing. The excess standard deviation of the time-

consistent portfolio is fully compensated by its reduced transaction costs (in particular,

replication costs), as captured by the modified Sharpe ratio. This phenomenon depends on

the model parameters (interest rate dynamics, stock price movements, number of maturities,

target returns...) and, in general, it is relevant when a high number of maturities is taken

into account.
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5.3 A life annuity application

Still in the market of Subsection 5.1, we compare the time-consistent and the classical

mean-variance approaches in the context of a life annuity.

Consider a life annuity payed with a lump sum at date 0 by a cohort of subscribers

(see e.g. Chapter 5 in Bower, Gerber, Hickman, Jones, and Nesbitt, 1997). The annuity

provides yearly payments to each subscriber until she dies. The insurance company invests

the received capital in N subportfolios with increasing maturities that allow to meet the

future payments. For example, we can assume that each subportfolio has target return

h
(i)
0 = 1.05 for i = 1, . . . , N with N = 20 years.

The random variable time-until-death captures the difference between the insureds age at

death and her age at subscription. It gives an idea of the potential length of the life annuity.

We suppose that the cumulative distribution of time-until-death is P(ti) = 1−e−γt3i defined

on the years ti = i for i = 1, 2, , 20. This specification ensures a unimodal distribution with

a peak at around ten years if we set γ = 0.001. Importantly, the weight of each subportfolio

i depends on the proportion of survivors at the maturity-year ti, i.e.

λ
(i)
0 =

1− P (ti)∑20
i=1 (1− P (ti))

.

If the company aims at reducing the risk of each subportfolio, it can consider a (classical or

time-consistent) mean-variance approach for each return u
(i)
t (0) satisfying E[u

(i)
ti

(0)] = 1.05

for i = 1, . . . , 20.

Similarly to Subsection 5.2, we scale standard deviations, Sharpe ratios and modified

Sharpe ratios in the two approaches by the weights λ
(i)
0 for i = 1, . . . , 20. In so doing, we

account for the amount of surviving subscribers at each horizon. As to transaction costs,

we set c = $0.003 and C = $0.006. Results are summarized in Figure 5.3.

In the top-left panel of the figure, the excess standard deviation of time-consistent

portfolios is more evident at intermediate horizons and vanishes when maturities approach

20 years, in agreement with the scaling induced by the time-until-death. The top-right panel

highlights the difference in transaction costs between the two frontiers. The convenience of

the time-consistent approach comes from the replication of one risky payoff instead of the

N = 20 payoffs required by the classical mean-variance optimal strategies. The commission

shrinkage affects the portfolio performance, as we can note from the Sharpe ratios and the

modified Sharpe ratios in the bottom panels. Without considering the transaction costs,

the standard mean-variance approach outperforms the optimal time-consistent strategy.

Nevertheless, the introduction of the commissions reverses the conclusion: the optimal

mean-variance portfolio turns out to have a lower (and sometimes negative) modified Sharpe
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Figure 2: Red (resp. blue) lines, bars and boxes refer to the classical (resp. time-consistent) mean-
variance solution for the life-annuity problem. Standard deviations, Sharpe ratios and modified

Sharpe ratios are scaled by the weights λ
(i)
0 for all i = 1, . . . , 20. 90% confidence intervals for these

variables are represented. The top-right panel represents the transaction costs of the time-consistent
portfolio (blue for replication costs, light blue for trading costs) and of the mean-variance portfolio
(red for replication costs, light red for trading costs).
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ratio. This effect is mostly due to the number of payments in the life annuity contract, which

requires the replication of many risky securities.

5.4 Measure comparison

An important aspect of our theory is the comparison among the measures that we employ.

We exploit the reference market of Subsection 5.1 to quantify the relations of Q, F and QT

with respect to the physical measure in a practical context.

To measure the discrepancy between probabilities we use the Kullback-Leibler distance.

This metric, also called divergence or relative entropy, is widely employed in the theory

of finance. See, for instance, Frittelli (2000), Hansen and Sargent (2001), Alvarez and

Jermann (2005) and Maccheroni, Marinacci, and Rustichini (2006) among the others. We

assume that P is uniformly distributed on the interval [0, 1] and we plot in Figure 3 the

Kullback-Leibler distance between each of Q, F , QT and P over increasing horizons up to

T = 36. All the divergences are increasing in the maturities under consideration, namely,

the farther the horizon, the larger the distance between P and the three alternative measures

considered. In particular, the (narrow) relative entropy between the risk-neutral and the

physical measure is associated with the magnitude of the market reward-to-risk ratios.

Furthermore, the forward measure turns out to be rather similar to P , whereas the risk-

adjusted measure departs significantly from the other measures. Indeed, this is reflected

also by the sizable differences between our portfolio weights and the ones derived through

the traditional frontier.
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Figure 3: Kullback-Leibler distance of the measures Q, F and QT from the physical measure
across the monthly time grid t = 0, . . . , 36.

To further asses the distances between these four probability measures, we look at the

moments of the same random variable under the different measures. We first take into
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account a random variable, say Θ, uniformly distributed on [0, 1] under P . We build a

sample of Θ by applying the inverse transform method to the normally distributed real-

izations employed to generate the Gaussian increments of WP . The uniform probability

of each state is the inverse of the sample size. By using the Radon-Nikodym densities LT ,

GT and ITT , we compute the distribution of Θ under the risk-neutral measure, the forward

measure and the risk-adjusted measure QT respectively. Then, we plot in the left panel of

Figure 4 the estimated cumulative distribution functions of Θ with respect to the different

probability measures. In addition, we estimate mean, variance, skewness and kurtosis under

the different measures in Table 1.4 In particular, the four distributions differ slightly only

with respect to higher moments and we notice that the risk-adjusted measure QT is the

measure that mostly departs from P .
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(a) Cumulative distribution functions of Θ.
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(b) Cumulative distribution functions of Ξ.

Figure 4: Estimated cumulative distribution functions of the random variables Θ and Ξ (on
the left and on the right panel respectively) with respect to the measures P , Q, F and QT .
Under P , Θ has uniform distribution on [0, 1] while Ξ is a standard Normal.

4The benchmark values for the four moments are 0 for the mean and the skewness, 1/12 = 0.083 for the
variance and 9/5 = 1.8 for the kurtosis.
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Mean of Θ Variance of Θ Skewness of Θ Kurtosis of Θ

P 0.4979 0.0836 0.0186 1.8151

Q 0.5050 0.0814 -0.0695 1.9993

F 0.5041 0.0817 -0.0602 1.9830

QT 0.4828 0.0859 0.1196 1.7629

Table 1: First four centered moments estimated from the simulated sample of Θ with respect
to the measures P , Q, F and QT .

Mean of Ξ Variance of Ξ Skewness of Ξ Kurtosis of Ξ

P -0.0069 1.0088 -0.02087 2.9686

Q -0.0160 1.0364 0.01236 2.8009

F -0.0165 1.0352 0.01227 2.8053

QT -0.0487 0.9987 0.09260 2.7417

Table 2: First four centered moments estimated from the simulated sample of Ξ with respect
to the measures P , Q, F and QT .

Finally, we repeat the analysis by considering a standard Gaussian variable Ξ under P .

A sample for Ξ is already provided by the unitary increments of the Wiener process WP .

We depict the cumulative distributions in the right panel of Figure 4 and we record the

estimated centered moments in Table 2. Results are qualitatively unchanged and we notice

that, again, the moments under QT are the most different from the benchmark.

6 Mean-variance frontier and optimal investment

We provide a microeconomic foundation of the mean-variance frontier of returns described

by Corollary 7. Similarly to Cochrane (2014) we show that optimal investments from date

s to date T produce return processes that lie on our mean-variance frontier. In particular,

such returns turn out to be a linear combination of returns g(s) and f(s) in agreement with

Theorem 10. Moreover, an analogue of time consistency property of mean variance returns

can be retrieved in optimal investment policies.

6.1 Optimal investment problem

We consider the optimization problem of an investor that decides her consumption policy

c = {cτ}τ∈[s,T ]. She is endowed with a positive initial wealth ws in L0(Fs) and receives an
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exogenous income stream i = {iτ}τ∈[s,T ]. The agent invests her initial wealth by selecting a

payoff stream with value w = {wτ}τ∈[s,T ] and, at any instant τ , she consumes cτ = iτ +wτ .

All processes are adapted. To make the investment affordable, ws is required to satisfy the

budget constraint

ws = Es
[∫ T

s
Ms,τwτdτ

]
.

The agent has an instantaneous quadratic utility

U (cτ ) = −1

2
(bτ −Ms,τ cτ )2 ,

where the process b = {bτ}τ∈[s,T ] defines a time-varying bliss point. Moreover, the in-

vestor deflates her consumption cτ by exploiting the pricing kernel Ms,τ . The intertemporal

optimization problem to solve is

max
c

Es
[∫ T

s
U (cτ ) dτ

]
sub ws = Es

[∫ T

s
Ms,τwτdτ

]
, cτ = iτ + wτ .

The related reduced form is

max
w

Es
[∫ T

s
U (iτ + wτ ) dτ

]
sub ws = Es

[∫ T

s
Ms,τwτdτ

]
. (9)

Proposition 12 If in Problem (9) the income stream is null and, for all τ ∈ [s, T ], the

bliss point is

bτ =
bsπτ (1T )

T − s
Ms,τ , bs ∈ L0 (Fs) ,

then the optimal payoff stream defines the mean-variance return

(T − s)w∗τ
ws

=
bsπs (1T )

ws
fτ (s) +

(
1− bsπs (1T )

ws

)
gτ (s).

Given some consumption cτ , the parameter of relative risk aversion in the quadratic

utility introduced above is

γ = −cτU
′′ (cτ )

U ′ (cτ )
=

cτ
bτ − cτ

.

Under the assumptions of Proposition 12 about income and bliss points,

1

γ
=
bsπτ (1T )− cτ

cτ
.

Therefore, in the optimal solution of the investment problem, by interpreting wsπτ (1T )/πs(1T )

as a special consumption, say c̃τ , we have

1− bsπs (1T )

ws
= −bsπτ (1T )− c̃τ

c̃τ
.

27



Moreover, by defining γ̃ through

1

γ̃
=
bsπτ (1T )− c̃τ

c̃τ
,

we can rewrite the return process associated with the optimal investment of Problem (9) as

(T − s)w∗τ
ws

= fτ (s) +
1

γ̃
(fτ (s)− gτ (s)) .

Hence, the optimal portfolio is split within a unitary amount of zero-coupon bonds with

maturity T and a risky allocation that depends on the agent’s attitude toward risk. Optimal

portfolio riskiness decreases as relative risk aversion rises. As expected, an infinitely risk-

averse agent is willing to bear just the risks originated by the floating rates. Proposition 12

delves more deeply and specifies that the optimal choice of an infinitely risk-averse person

is to buy only T -bonds. For instance, f(s) is preferred to the return of any rolling strategy

made by short-term bonds, that may constitute a safer investment in principle. This result

justifies the use of zero-coupon T -bonds as the analogous of risk-free assets in a stochastic

interest rates environment: they are optimal for infinitely risk-averse agents with quadratic

utility over the investment period [s, T ].

The solidity for this approach relies on Wachter (2003) which shows that, in a mul-

tiperiod complete market, the utility of an infinitely risk-averse agent is maximized by a

portfolio of bonds with the same maturity as the investment horizon, even if interest rates

are random. In fact, Wachter (2003) provides a formalization of the preferred habitat theory

that dates back to Modigliani and Sutch (1966). The conjecture of Modigliani and Sutch

(1966) is, indeed, that a risk-averse person chooses assets with the same maturity as the

end of the investment period, i.e. assets in the so-called maturity habitat.5

Therefore, under the assumptions of Proposition 12 the optimal consumption stream of

an infinitely risk-averse investor coincide with the optimal wealth, that is

cτ = wτ = (T − s)wsfτ (s), τ ∈ [s, T ],

and it constitutes a very smooth consumption policy in a stochastic rates setting.

6.2 Time consistency of optimal cashflows

Inspired by the time consistency of our mean-variance frontier claimed in Corollary 9, we

investigate whether a similar feature is kept in the optimal portfolio problem. Specifically,

once Problem (9) is solved by a payoff stream w∗ = {w∗τ}τ∈[s,T ] on the time interval [s, T ],

5Short- or long-living securities turn out to be inconvenient because they produce extra risks and invest-
ment costs that need to be compensated in some ways.
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we assess whether the restriction of w∗ is optimal on the subperiod [s, t], too. In particular,

we consider the problem

max
w

Es
[∫ t

s
U (iτ + wτ ) dτ

]
sub w̃s = Es

[∫ t

s
Ms,τwτdτ

]
, (10)

where w̃s is a given initial wealth in L0(Fs).

Proposition 13 Under the assumptions of Proposition 12, if w∗ solves Problem (9) with

initial wealth ws, then it also solves Problem (10) with initial wealth

w̃s =
t− s
T − s

ws.

The mean-variance return which is optimal on the investment period [s, T ] is still optimal

on the subperiod [s, t] for the same investor with a smaller initial endowment. The intuition

behind the lower initial wealth is that the fraction (t − s)/(T − s) of ws is employed for

buying the cashflow w∗ on [s, t]. The remaining portion, namely (T − t)/(T − s), is left

for the last subinterval [t, T ]. The nonlinear dependence of the optimal return from the

initial endowment is actually a well-known issue for quadratic investment problems. See,

for instance, Mossin (1968) for a deeper discussion.

An analogous reasoning of Proposition 13 shows that w∗ is optimal also on the terminal

subperiod [t, T ], according to

max
w

Es
[∫ T

t
U (iτ + wτ ) dτ

]
sub ŵs = Es

[∫ T

t
Ms,τwτdτ

]
, (11)

where w̃s belongs to L0(Fs). Indeed, the following result holds.

Corollary 14 Under the assumptions of Proposition 12, if w∗ solves Problem (9) with

initial wealth ws, then it also solves Problem (11) with

ŵs =
T − t
T − s

ws.

Although Problem (11) involves the time window [t, T ], the conditional expectation in

the objective function and in the budget constraint is taken at the previous date s. The

pricing kernel is based on s as well. Accordingly, ŵs is Fs-measurable and it represents the

portion of initial wealth assigned to the final subperiod. The time consistency of w∗ that we

show requires, in fact, the same information set. This approach is known as precommitment

in the language of Strotz (1955).

In general, if the decision were contingent at time t, a more profitable optimal investment

would arise in the final time frame. Hence, our construction is consistent with a rational
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inattention approach, as described in Sims (2003). Indeed, we implicitly assume that our

investor makes a decision at time s for the whole period [s, T ] because she has a limited

ability to process the incoming information at time t. In other words, observing the portfolio

value at t may be costly and transaction costs may discourage changes in the investment

policy. A more recent theory for optimal infrequent adjustments in portfolio selection is

developed in Abel, Eberly, and Panageas (2013).

7 Conclusions

We obtain a conditional orthogonal decomposition of asset returns in the spirit of Hansen

and Richard (1987) by employing a family of risk-adjusted measures derived from the for-

ward measure. In addition, the associated mean-variance frontier features an important

time consistency property, with practical advantages for multiperiod portfolio optimization

in terms of replication costs. The whole construction lies within the linear pricing paradigm

and it is consistent with the consumption-investment plan of an agent that maximizes a

quadratic utility.

Introducing further specific dynamics of interest rates, beyond Vasicek model, may

constitute an interesting avenue for future research. Such dynamics may convey special

shapes of the mean-variance frontier that could improve the applicability of our construction

in specific contexts.
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A Complements of the theory

A.1 Forward measure and numéraire changes

The T -forward measure F is constructed by employing as numéraire the no-arbitrage price
of a zero-coupon bond with maturity T . F is equivalent to the risk-neutral measure Q and
its Radon-Nikodym derivative with respect to Q is

FT =
e−

∫ T
0 Yτdτ

E
[
LT e

−
∫ T
0 Yτdτ

] = er
T
0 T−

∫ T
0 Yτdτ .

Moreover,

Ft = Et [Lt,TFT ] = er
T
0 T−rTt (T−t)−

∫ t
0 Yτdτ

and we set Ft,T = FT /Ft. The Radon-Nikodym derivative of F with respect to P is
GT = FTLT , which belongs to L2(FT ). From Ft = Et[Lt,TFT ], we have

Gt = Et [GT ] = Et [LTFT ] = LtFt

and we define Gt,T = GT /Gt.
If rates of interest are constant over time, Ft = 1 for any t so that Gt,T = Lt,T .
We now introduce some numéraire changes based on the investment horizon into consid-

eration. Considering the maturity T , QT is the risk-adjusted measure associated with the
no-arbitrage price process of a security generating the payoff GT , employed as numéraire.
Its Radon-Nikodym derivative with respect to F equals GT /E[G2

T ] and, at previous times
τ , it becomes

Eτ
[
G2
T

]
GτE

[
G2
T

] .
We denote by ITT the Radon-Nikodym density of QT with respect to P and by ITτ its
conditional expectation at any previous time τ . They are obtained via multiplication by
GT and Gτ respectively:

ITT =
G2
T

E
[
G2
T

] , ITτ =
Eτ
[
G2
T

]
E
[
G2
T

] .
Moreover, we define ITτ,T = ITT /I

T
τ and so, for any random variable V , EQ

T

τ [V ] = Eτ [ITτ,TV ].
In a similar fashion, on the restricted time frame [s, t] with t 6 T , we define the measure

Qt. Its Radon-Nikodym derivative Itt with respect to P and its conditional values Itτ are

Itt =
G2
t

E
[
G2
t

] , Itτ =
Eτ
[
G2
t

]
E
[
G2
t

] .
In addition, we define Itτ,t = Itt/I

t
τ and so EQ

t

τ [V ] = Eτ [Itτ,tV ] for any V as before.
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A.2 Additional properties of the mean-variance frontier

The following result involves the relation between the conditional and the unconditional
version of the mean-variance frontier. Indeed, unconditional mean-variance returns belong
to the conditional frontier, too.

Proposition 15 Consider returns u(s) such that EQT [u2T (s)] < +∞ and EQT [uT (s)] = h

for some h ∈ R. If, among them, z(s) minimizes varQ
T

(uT (s)), then z(s) minimizes also

varQ
T

s (uT (s)) among all u(s) with EQ
T

s [uT (s)] = EQ
T

s [zT (s)].

Proof of Proposition 15. Suppose that there exists a return u(s) such that EQ
T

s [uT (s)] =

EQ
T

s [zT (s)] and varQ
T

s (uT (s)) < varQ
T

s (zT (s)) a.s. Moreover, EQT [uT (s)] = EQT [zT (s)] = h
and

EQ
T

s

[
u2T (s)

]
−
(
EQ

T

s [uT (s)]
)2

< EQ
T

s

[
z2T (s)

]
−
(
EQ

T

s [zT (s)]
)2

so that EQ
T

s [u2T (s)] < EQ
T

s [z2T (s)]. This implies that EQT [u2T (s)] < EQT [z2T (s)] and so

varQ
T

(uT (s)) = EQ
T [
u2T (s)

]
−
(
EQ

T
[uT (s)]

)2
< EQ

T [
zT (s)2

]
−
(
EQ

T
[zT (s)]

)2
= varQ

T
(zT (s)) ,

which is a contradiction.
The converse implication of Proposition 15 does not hold, as highlighted by Cochrane

(2005). However, an equivalent claim to conditional mean-variance returns can be derived
by employing unconditional scaled returns, or payoffs of managed portfolios. Rephrasing
Chapter 8 of Cochrane (2005) in our framework, a scaled return is obtained by multiplying
a return process u(s) by some (fixed) weight αs in L0(Fs). The orthogonal decomposition
of αsu(s) is immediate once the decomposition of u(s) is achieved in HT

s . In addition,
scaled returns allow to write an unconditional formulation of the conditional mean-variance
frontier. By considering returns u(s) such that EQ

T

s [uT (s)] = hs as in Corollary 7 and
denoting by z(s) the mean-variance return in [s, T ], we have

varQ
T

s (zT (s)) 6 varQ
T

s (uT (s)) , EQ
T

s [uT (s)] = hs

if and only if

varQ
T

(αszT (s)) 6 varQ
T

(αsuT (s)) , EQ
T

s [uT (s)] = hs ∀αs ∈ L0 (Fs) .

The former equivalence is due to the definition of conditional expectation. Conditioning may
be dropped when managed portfolios are considered. However, the last formulation does
not refer to the unconditional mean-variance frontier because the knowledge of EQT [uT (s)]
is not sufficient for the equivalence.

We now focus on the mean-variance frontier of excess returns. Specifically, the mean-
variance frontier of excess returns at time T is spanned by e(s).
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Proposition 16 Consider excess returns ι(s) such that EQ
T

s [ιT (s)] = hs for some hs ∈
L0(Fs). Among them, the excess return that minimizes varQ

T

s (ιT (s)) is

ι(s) = wse(s), ws =
hsπs (1T )Es

[
G2
T

]
vars (GT )

.

Proof of Proposition 16. Any excess return ι(s) is associated with a process ι̂(s) ∈
◦
HT
s

defined by ι̂Tτ (s) = ιτ (s)Ms,τ/Gs,τ . Since

◦
HT
s = spanL0

{
êT (s)

}
⊕
{
n̂T (s) ∈

◦
HT
s : EQ

T

s

[
ι̂TT (s)n̂TT (s)

]
= 0
}
,

ι̂T (s) decomposes as

ι̂T (s) = wsê
T (s) + n̂T (s), ws =

e−r
T
s (T−s)hsEs

[
G2
T

]
vars (GT )

.

The proper expression of ws is derived as in the proof of Theorem 3. As a result, the excess

return ι(s) decomposes as ι(s) = wse(s) + n(s) with EQ
T

s [nT (s)] = EQ
T

s [eT (s)nT (s)] = 0.

In addition, varQ
T

s (ιT (s)) = EQ
T

s [ι2T (s)]−h2s for all excess returns ι(s) into consideration
and

EQ
T

s

[
ι2T (s)

]
= w2

sEQ
T

s

[
e2T (s)

]
+ EQ

T

s

[
n2T (s)

]
+ 2wsEQ

T

s [eT (s)nT (s)]

= w2
sEQ

T

s

[
e2T (s)

]
+ EQ

T

s

[
n2T (s)

]
> w2

sEQ
T

s

[
e2T (s)

]
.

As a consequence, varQ
T

s (ιT (s)) > varQ
T

s (wseT (s)), i.e. varQ
T

s (ιT (s)) is minimized by the
excess return characterized by n(s) = 0.

B Proofs

Lemma 17 (i) Es[Gtĝtt(s)] = Gs.

(ii) 〈ĝt(s), ût(s)〉ts = 〈ĝt(s), ĝt(s)〉ts = G2
s

/
Es[G2

t ] for any û(s) ∈ Ht
s such that ûts(s) = 1.

(iii) 〈ĝt(s), ĝt(s)〉ts
/
Es[Gtĝtt(s)] = Gs

/
Es[G2

t ].

(iv) EQ
t

s [(êtt(s))
2] = EQ

t

s [êtt(s)] = vars(Gt)
/
Es[G2

t ].

Proof of Lemma 17.

(i)

Es
[
Gtĝ

t
t(s)

]
= Es

[
Gtĝ

T
t (s)

]
= Es

[
Gt
Gs
Gt

]
= Gs.

(ii) All ût(s) ∈ Ht
s such that ûs(s) = 1 satisfy

Es
[
G2
t

] 〈
ĝt(s), ût(s)

〉t
s

= Es
[
G2
t

]
EQ

t

s

[
ĝtt(s)û

t
t(s)
]

= GsEs
[
Gtû

t
t(s)
]

= G2
s.

The same result holds when ût(s) is chosen to be ĝt(s).
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(iii) It follows from (i) and (ii).

(iv) Since êt(s) = proj ◦
Ht
s

1, for any ι̂t(s) ∈
◦
Ht
s, we have EQt

[(
1− êtt(s)

)
ι̂t(s)

]
= 0. Then,

the first equality follows when ι̂t(s) = êt(s). As for the second one,

Es
[
G2
t

]
EQ

t

s

[
êtt(s)

]
= Es

[
G2
t ê
t
t(s)
]

= Es
[
G2
t ê
T
t (s)

]
= Es

[
G2
t

(
1− ĝTt (s)

)]
= Es

[
G2
t

]
− Es

[
G2
t

1

Gt

]
Gs

= Es
[
G2
t

]
−G2

s = Es
[
G2
t

]
− (Es [Gt])

2 .

Proof of Proposition 1

The algebra L0(Fs) is endowed with the pointwise sum and product between random vari-
ables. The outer product · : L0(Fs)×Ht

s → Ht
s is well-defined because, for any as ∈ L0(Fs)

and ẑ ∈ Ht
s, asẑ belongs to Ht

s too.
Moreover, for each as, bs ∈ L0(Fs) and ẑ, v̂ ∈ Ht

s the following properties hold.

(1) as · (ẑ + v̂) = as · ẑ + as · v̂.

(2) (as + bs) · ẑ = as · ẑ + bs · ẑ.

(3) as · (bs · ẑ) = (asbs) · ẑ.

(4) If es denotes the Fs-measurable random variable equal to one, es · ẑ = ẑ.

These features make Ht
s a module over L0(Fs).

Now consider the inner product 〈 , 〉ts : Ht
s ×Ht

s → L0(Fs). For all ẑ ∈ Ht
s, E

Qt
s [ẑ2t ] ∈

L0
s(Fs). Therefore, by Footnote 3 in Hansen and Richard (1987), 〈ẑ, v̂〉ts = EQ

t

s [ẑtv̂t] belongs
to L0(Fs).

In addition, for each as ∈ L0(Fs) and ẑ, v̂, ŵ ∈ Ht
s the following properties are satisfied.

(5) 〈ẑ, ẑ〉ts = EQ
t

s [ẑ2t ] = Es[G2
t ẑ

2
t ]/Es[G2

t ] > 0 with equality if and only if Gtẑt = 0. This
implies that, for any τ ∈ [s, t], Eτ [Gtẑt] = Gτ ẑτ = 0. As a result, ẑ = 0.

(6) 〈ẑ, v̂〉ts = 〈v̂, ẑ〉ts.

(7) 〈ẑ + v̂, ŵ〉ts = 〈ẑ, ŵ〉ts + 〈v̂, ŵ〉ts.

(8) 〈as · ẑ, v̂〉ts = asEQ
t

s [ẑtv̂t] = as〈ẑ, v̂〉ts.

As a result, Ht
s is a pre-Hilbert module.

We now prove that Ht
s is selfdual. First, note that L0(Fs) is endowed with the Lévy

metric d(f, g) = EF [min{|f − g|, 1}] for all f, g ∈ L0(Fs). As described in Cerreia-Vioglio,
Maccheroni, and Marinacci (2017), in a pre-Hilbert L0-module a metric, denoted by dH ,
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is given by the composition of d with the L0-valued norm induced by the L0-valued inner
product. Hence, the dH distance between two processes u, v in Hs is

dH(ẑ, v̂) = d

(√
〈ẑ − v̂, ẑ − v̂〉ts, 0

)
= EF

[
min

{√
EQ

t

s

[
(ẑt − v̂t)2

]
, 1

}]
.

Since the selfduality of a pre-Hilbert L0-module is equivalent to the dH -completeness (see
Theorem 5 in Cerreia-Vioglio, Maccheroni, and Marinacci, 2017), we establish this property
in Ht

s. In addition, we observe that the metric dH actually involves just terminal values
ẑt and v̂t and so dH(ẑ, v̂) actually coincides with the distance between random variables

ẑt, v̂t belonging to the L0-module L2
s(Ft, Qt) = {f ∈ L0(Ft) : EQ

t

s [f2] ∈ L0(Fs)}, which is
complete: see Theorem 7 in Cerreia-Vioglio, Kupper, Maccheroni, Marinacci, and Vogelpoth
(2016). This fact makes dH -completeness of Ht

s straightforward.
Therefore, consider a Cauchy sequence {ẑ(n)}n∈N ⊂ Ht

s: for all ε > 0 there is Nε ∈ N
such that, for all n,m > Nε,

dH

(
ẑ(n), ẑ(m)

)
= EF

[
min

{√
EQ

t

s

[(
ẑ
(n)
t − ẑ(m)

t

)2]
, 1

}]
< ε.

Thus, we obtain a Cauchy sequence {ẑ(n)t }n∈N ⊂ L2
s(Ft, Qt), which is complete. As a result,

this sequence has limit ẑt ∈ L2
s(Ft, Qt). From ẑt we define the process ẑ = {ẑτ}τ∈[s,t] by

setting ẑτ = EF [ẑt]. This process is a conditional F -martingale and belongs to Ht
s. To

assess this fact, we check that EFs [|ẑτ |] ∈ L0(Fs) for all τ .
Since any |ẑτ | is non-negative, its conditional expectation is always defined as an ex-

tended real random variable. Moreover, the conditional Cauchy-Schwartz’ inequality guar-
antees that

EFs [|ẑτ |] 6 EFs [|ẑt|] =
Es [Gt |ẑt|]

Gs
6

√
Es
[
G2
t ẑ

2
t

]
Gs

=

√
EQ

t

s

[
ẑ2t
]
Es
[
G2
t

]
Gs

,

where the last quantity belongs to L0(Fs). Consequently, EFs [|ẑτ |] ∈ L0(Fs) for all τ ∈ [s, t].
We, then, determined a process ẑ ∈ Ht

s such that

dH

(
ẑ(n), ẑ

)
= EF

[
min

{√
EQ

t

s

[(
ẑ
(n)
t − ẑt

)2]
, 1

}]

is arbitrarily small. Since ẑ(n) goes to ẑ in dH , Ht
s is dH -complete and so selfdual.

Proof of Theorem 3

Let ût(s) be defined by the relation ût(s) = ĝt(s) + ωsê
t(s) + n̂t(s) with ωs ∈ L0(Fs) and

n̂t(s) ∈
◦
Ht
s. The process ût(s) ∈ Ht

s because it is a linear combination of three processes in
Ht
s. Moreover,

ûts(s) = ĝts(s) + ωsê
t
s(s) + n̂ts(s) = 1 + 0 + 0 = 1
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since êt(s) and n̂t(s) are included in
◦
Ht
s.

Conversely, consider any process ût(s) in Ht
s with ûts(s) = 1. Note that ût(s) − ĝt(s)

belongs to Ht
s and in particular to

◦
Ht
s because

Es
[
Gt
(
ûtt(s)− ĝtt(s)

)]
= Es

[
Gtû

t
t(s)
]
− Es

[
Gtĝ

t
t(s)

]
= Gs −Gs = 0.

Define the projection coefficient ωs ∈ L0(Fs) by

ωs =
EQ

t

s

[(
ûtt(s)− ĝtt(s)

)
êtt(s)

]
EQ

t

s

[
(êtt(s))

2
] =

EQ
t

s

[
ûtt(s)

]
− EQ

t

s

[
ĝtt(s)

]
EQ

t

s [êtt(s)]

=
EQ

t

s

[
ûtt(s)

]
Es
[
G2
t

]
−G2

s

vars (Gt)
,

where last equalities are due to the definition of êt(s) and Lemma 17 (iv). Define also the

process n̂t(s) = ût(s)− ĝt(s)−ωsêt(s), which belongs to
◦
HT
s because both ût(s)− ĝt(s) and

êt(s) are in
◦
HT
s . In addition,

EQ
t

s

[
ĝtt(s)n̂

t
t(s)
]

= EQ
t

s

[
ĝtt(s)û

t
t(s)
]
− EQ

t

s

[(
ĝtt(s)

)2]− ωsEQts [
ĝtt(s)ê

t
t(s)
]

= 0

because EQ
t

s [ĝtt(s)û
t
t(s)] = EQ

t

s [
(
ĝtt(s)

)2
] by Lemma 17 and ĝt(s) and êt(s) belong to orthog-

onal submodules. Furthermore,

EQ
t

s

[
êtt(s)n̂

t
t(s)
]

= EQ
t

s

[
êtt(s)

(
ûtt(s)− ĝtt(s)

)]
− ωsEQ

t

s

[(
êtt(s)

)2]
= 0

by the expression of ωs. By the definition of êt, EQ
t

s [êtt(s)n̂
t
t(s)] = EQ

t

s [n̂tt(s)] = 0.

Proof of Corollary 4

The result follows from the relation between returns and martingales of eq. (2).

Proof of Theorem 6

Each conditional martingale ût(s) satisfies the decomposition provided by Theorem 3

ût(s) = ĝt(s) + ωsê
t(s) + n̂t(s), ωs =

ksEs
[
G2
t

]
−G2

s

vars (Gt)
.

Moreover,

varQ
t

s

(
ûtt(s)

)
= EQ

t

s

[(
ûtt(s)

)2]− (EQts [
ûtt(s)

])2
= EQ

t

s

[(
ûtt(s)

)2]− k2s .
We note that

EQ
t

s

[(
ûtt(s)

)2]
= EQ

t

s

[(
ĝtt(s) + ωsê

t
t(s) + n̂tt(s)

)2]
= EQ

t

s

[(
ĝtt(s) + ωsê

t
t(s)
)2]

+ EQ
t

s

[(
n̂tt(s)

)2]
+ 2EQ

t

s

[(
ĝtt(s) + ωsê

t
t(s)
)
n̂tt(s)

]
.
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By Theorem 3, EQ
t

s

[(
ĝtt(s) + ωsê

t
t(s)
)
n̂tt(s)

]
= 0 and so

EQ
t

s

[(
ûtt(s)

)2]
= EQ

t

s

[(
ĝtt(s) + ωsê

t
t(s)
)2]

+ EQ
t

s

[(
n̂tt(s)

)2]
> EQ

t

s

[(
ĝtt(s) + ωsê

t
t(s)
)2]

.

Therefore, varQ
t

s (ûtt(s)) is minimized by the conditional martingale with n̂t(s) = 0.

Proof of Corollary 7

The relation ut(s) = er
T
s (T−s)−rTt (T−t)ûtt(s) guarantees that

EQ
t

s

[
ûtt(s)

]
= e−r

T
s (T−s)EQ

t

s

[
er
T
t (T−t)ut(s)

]
= e−r

T
s (T−s)hs

and
varQ

t

s

(
ûtt(s)

)
= e−2r

T
s (T−s)varQ

t

s

(
er
T
t (T−t)ut(s)

)
.

Hence, the claim is an immediate consequence of Theorem 6 with ks = e−r
T
s (T−s)hs.

Proof of Proposition 8

We show that, if ẑT (s) is a conditional mean-variance martingale in [s, T ], then ẑt(s) is a
conditional mean-variance martingale in [s, t].

Suppose that ẑT (s) minimizes varQ
T

s (ûTT (s)) among all conditional martingales in HT
s

with EQ
T

s [ûTs (T )] = ks for a given ks ∈ L0(Fs). By Theorems 3 and 6,

ẑT (s) = ĝT (s) + ωsê
T (s), ωs =

ksEs
[
G2
T

]
−G2

s

vars (GT )

and EQ
T

s [ĝTT (s)eTT (s)] = 0. The decomposition on [s, T ] induces a decomposition on [s, t] for
the conditional martingale ẑt(s) obtained by restricting ẑT (s) on [s, t]:

ẑt(s) = ĝt(s) + ωsê
t(s).

Moreover, EQ
t

s [ĝtt(s)ê
t
t(s)] = 0 and so we retrieve the orthogonal decomposition of ẑt(s)

provided by Theorem 3 in the time window [s, t]. Indeed, since ẑtt(s) = ẑTt (s), we have

Es
[
G2
t

]
EQ

t

s

[
ĝtt(s)ê

t
t(s)
]

= Es
[
G2
t ĝ
t
t(s)ê

t
t(s)
]

= Es
[
G2
t ĝ
T
t (s)êTt (s)

]
= Es

[
G2
t

Gs
Gt

Gt −Gs
Gt

]
= 0.

In addition,

ωs =
ksEs

[
G2
T

]
−G2

s

vars (GT )
=
hsEs

[
G2
t

]
−G2

s

vars (Gt)
,
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where hs ∈ L0(Fs) is identified by ks through

hs =
1

Es
[
G2
t

] {G2
s +

vars (Gt)

vars (GT )

(
ksEs

[
G2
T

]
−G2

s

)}
.

Then, Theorem 6 ensures that ẑt(s) minimizes varQ
t

s (ûtt(s)) among all conditional martin-

gales in Ht
s such that EQ

t

s [ûtt(s)] = hs. In other words, ẑt(s) is a conditional mean-variance
martingale at time t.

Proof of Corollary 9

Suppose that the return z(s) minimizes varQ
T

s (uT (s)) among all returns with EQ
T

s [uT (s)] =
ks for some given ks ∈ L0(Fs). By Corollaries 4 and 7,

z(s) = g(s) + ωse(s), ωs =
kse
−rTs (T−s)Es

[
G2
T

]
−G2

s

vars
(
GTT
) ,

with EQ
T

s [gT (s)eT (s)] = 0. The former decomposition holds algebraically at time t in

[s, T ] too, where, in addition EQ
t

s [e2r
T
t (T−t)gt(s)et(s)] = 0. Hence, by uniqueness of the

decomposition, we obtain the same result that we get by decomposing z(s) in the time
range [s, t] as prescribed by Corollary 4. Furthermore,

ωs =
kse
−rTs (T−s)Es

[
G2
T

]
−G2

s

vars (GT )
=
hse
−rTs (T−s)Es

[
G2
t

]
−G2

s

vars (Gt)
,

where hs ∈ L0(Fs) is determined by ks through the relation

hs =
1

Es
[
G2
t

] {erTs (T−s)G2
s +

vars (Gt)

vars (GT )

(
ksEs

[
G2
T

]
− erTs (T−s)G2

s

)}
.

By Corollary 7 in [s, t], this means that z(s) minimizes varQ
t

s (er
T
t (T−t)ut(s)) among all

returns with EQ
t

s [er
T
t (T−t)ut(s)] = hs. Hence z(s) is a mean-variance return at time t, too.

Proof of Theorem 10

Suppose that u(s) is a mean-variance return. Then, Corollary 7 guarantees that u(s) =
g(s) + ωse(s) for some ωs ∈ L0 (Fs). Consider another mean-variance return v(s) that
decomposes as v(s) = g(s) + ω̃se(s) with ω̃s different from zero in L0 (Fs). Hence, e(s) =
(v(s)− g(s))/ω̃s and so

u(s) = g(s) +
ωs
ω̃s
v(s)− ωs

ω̃s
g(s) = αsv(s) + (1− αs) z(s),

where αs = ωs/ω̃s and z(s) = g(s), which is on the mean-variance frontier, too.
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Conversely, assume that a return process u(s) satisfies the decomposition u(s) = αsv(s)+
(1− αs) z(s) with v(s), z(s) mean-variance returns, i.e. v(s) = g(s) + ω̃se(s) and z(s) =
g(s) + w̄se(s) for some ω̃s, w̄s ∈ L0(Fs). It follows that

u(s) = αs (g(s) + ω̃se(s)) + (1− αs) (g(s) + w̄se(s)) = g(s) + (αsω̃s + (1− αs) w̄s) e(s)

and so, by Corollary 7, u(s) is on the mean-variance frontier.
By considering the return process f(s), we get u(s) = αsg(s) + (1− αs) f(s). Since

f(s) = g(s) + e(s), we immediately obtain that αs = 1− ωs.

Proof of Proposition 11

Since u(s) is a return process,

1 = Es [Ms,tut(s)] = Es
[
G2
t

] e−rTs (T−s)
Gs

EQ
t

s

[
er
T
t (T−t)

Gt
ut(s)

]

= Es
[
G2
t

] e−rTs (T−s)
Gs

·
{
covQ

t

s

(
1

Gt
, er

T
t (T−t)ut(s)

)
+ EQ

t

s

[
1

Gt

]
EQ

t

s

[
er
T
t (T−t)ut(s)

]}
.

As EQ
t

s [1/Gt] = Gs/Es[G2
t ], we obtain

Gs

Es
[
G2
t

] {EQts [
er
T
t (T−t)ut(s)

]
− erTs (T−s)

}
= −covQts

(
1

Gt
, er

T
t (T−t)ut(s)

)
.

By choosing u(s) = g(s), we deduce

Gs

Es
[
G2
t

] {EQts [
er
T
t (T−t)gt(s)

]
− erTs (T−s)

}
= −covQts

(
1

Gt
, er

T
t (T−t)gt(s)

)
.

As a result, in the previous representation

Gs

Es
[
G2
t

] {EQts [
er
T
t (T−t)ut(s)

]
− erTs (T−s)

}

= −covQts
(

1

Gt
, er

T
t (T−t)gt(s)

) covQ
t

s

(
1
Gt
, er

T
t (T−t)ut(s)

)
covQ

t

s

(
1
Gt
, er

T
t (T−t)gt(s)

)
= βs

Gs

Es
[
G2
t

] {EQts [
er
T
t (T−t)gt(s)

]
− erTs (T−s)

}
,

where

βs = covQ
t

s

(
1

Gt
, er

T
t (T−t)ut(s)

)/
covQ

t

s

(
1

Gt
, er

T
t (T−t)gt(s)

)
belongs to L0(Fs). Therefore, we get eq. (5). In addition, the coefficient βs can be rewritten
as in the claim.
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Proof of Proposition 12

The Lagrangian function is

L = Es
[∫ T

s
U (iτ + wτ )− λsMs,τwτdτ

]
+ λsws

with ws ∈ L0(Fs). Note that L is a function of λs and wτ (ω) for all instants τ ∈ [s, T ]
and states ω ∈ Ω. The first-order condition implies that (at any time and in any state)
U ′ (iτ + wτ )− λsMs,τ = 0. Therefore,

wτ =
(
U ′
)−1

(λsMs,τ )− iτ =
bτ
Ms,τ

− λs
Ms,τ

− iτ =
bτ
Ms,τ

− λsgτ (s)− iτ ,

thanks to the quadratic utility. The constraint over ws delivers

ws = Es
[∫ T

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dτ

]
− λsEs

[∫ T

s
Ms,τgτ (s)dτ

]
= Es

[∫ T

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dτ

]
− λs(T − s)

and so

λs =
1

T − s
Es
[∫ T

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dτ

]
− ws
T − s

.

As a result,

wτ =
bτ
Ms,τ

− iτ −
(

1

T − s
Es
[∫ T

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dt

]
− ws
T − s

)
gτ (s)

and we denote it by w∗τ . Under the assumptions about income and bliss points,

w∗τ =
bsπτ (1T )

T − s
−
(

1

(T − s)2
Es
[∫ T

s
e−r

T
τ (T−τ)Ms,τ bsdτ

]
− ws
T − s

)
gτ (s)

=
bsπs (1T )

T − s
πτ (1T )

πs (1T )
−
(

bs
(T − s)2

πs (1T )Es
[∫ T

s
Gs,τdτ

]
− ws
T − s

)
gτ (s)

=
bsπs (1T )

T − s
fτ (s)−

(
bsπs (1T )

T − s
− ws
T − s

)
gτ (s).

Consequently, the optimal payoff stream is associated with the return

(T − s)w∗τ
ws

=
bsπs (1T )

ws
fτ (s)−

(
bsπs (1T )

ws
− 1

)
gτ (s),

which is on the mean-variance frontier by Theorem 10.
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Proof of Proposition 13

Following the same steps as in the proof of Proposition 12, the Lagrange multiplier is

λs =
1

t− s
Es
[∫ t

s
Ms,τ

(
bτ
Ms,τ

− iτ
)
dτ

]
− w̃s
t− s

.

Therefore, the optimal payoff stream is

wτ =
bsπτ (1T )

T − s
−
(

1

(T − s)(t− s)
Es
[∫ T

s
e−r

T
τ (T−τ)Ms,τ bsdτ

]
− w̃s
t− s

)
gτ (s)

=
bsπs (1T )

T − s
πτ (1T )

πs (1T )
−
(

bs
(T − s)(t− s)

πs (1T )Es
[∫ T

s
Gs,τdτ

]
− w̃s
t− s

)
gτ (s)

=
bsπs (1T )

T − s
fτ (s)−

(
bsπs (1T )

T − s
− ws
T − s

)
gτ (s).

and it coincides with the one prescribed by Proposition 12.

C Additional simulations

C.1 Reference market with two stocks

We provide a generalization of the reference market of Subsection 5.1 by allowing for two
risky stocks. We, then, repeat the simulations of Subsection 5.2 with 6 maturities. Gener-
alizations with a higher number of assets can be developed in a similar way.

In the system of equations (7) under the measure Q, we consider an additional Wiener
process V Q, independent of WQ and ZQ and a novel stock price St with volatility κ > 0.
The parameter ψ provides the instantaneous correlation between the new stock and the
zero-coupon bond, while χ gives the instantaneous correlation with the old stock:

dSt = StYt dt+ κSt

[
ψdWQ

t + χ−φψ√
1−φ2

dZQt +
√

1− ψ2 − (χ−φψ)2
1−ψ2 dV Q

t

]
dXt = XtYt dt+ ηXt

[
φdWQ

t +
√

1− φ2dZQt
]

dπt (1T ) = πt (1T )Ytdt− πt (1T )B(t, T )σdWQ
t .

The orthogonal shocks dWQ
t , dZQt and dV Q

t come from the Cholesky factorization of the
3× 3 correlation matrix of the original Brownian motions.

The market price of risk is the multivariate process [νW , νZ , νV ]′ with the first two
entries as in eq. (8) and

νVt =
µSt − Yt − κψνWt −

χ−φψ√
1−φ2

κνZt

κ
√

φ2−2φψχ+ψ2+χ2−1
φ2−1

,

where µS is the adapted drift process of dSt/St under the physical measure. The Radon-
Nikodym derivative of Q with respect to P , the Novikov condition and the pricing kernel
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dynamics are modified to accommodate the extra component in the market price of risk.
The other assumptions and the parameter choices of Subsection 5.1 are kept. In addition,
we set κ = 0.15, ψ = 0.1, χ = −0.3 and µSt = Yt + 0.08.

We, then, repeat the six-semester mean-variance optimization of Subsection 5.2 with the
constants c = $0.002 for trading costs and C = $0.02 for replication costs. Results are dis-
played in Figure C.1, where we represent (scaled) standard deviations, (scaled) Sharpe ratios
and (scaled) modified Sharpe ratios across maturities, transaction costs and units of risky
assets in each subportfolio, where risky assets coincide with the log optimal portfolio (in the
time-consistent approach) and the portfolio replicating the pricing kernel (in the classical
frontier). As the modified Sharpe ratio shows, in this simulation the time-consistent ap-
proach outperforms the standard mean-variance optimization when replication and trading
costs are taken into account.
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Figure 5: Red (resp. blue) lines, bars and boxes refer to the classical (resp. time-consistent) mean-
variance solution for the problem of Subsection C.1. Standard deviations, Sharpe ratios and modified

Sharpe ratios are scaled by the weights λ
(i)
0 for all i = 1, . . . , 6. 90% confidence intervals for these

variables are represented. The top-right panel represents the transaction costs of the time-consistent
portfolio (blue for replication costs, light blue for trading costs) and of the mean-variance portfolio
(red for replication costs, light red for trading costs). Medium panels contain the box-and-whisker

plot at 25th and 75th percentiles and the bar plot of loadings |α(i)
s | and |α̃(i)

s | at all horizons.
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